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Overview:

Introduction: Schrodinger Functional schemes
and automatic O(a) improvement.

*The Chirally Rotated Schrodinger Functional (xSF)
e Definition
 Renormalization & Improvement
» Correlation Functions

A perturvatibe study
i * Determination of coefficients
\{ * Checks of automatic O(a) improvement.

» Applications
‘ - Concluding Remarks
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Introduction: @ '

*Finite Volume (FV) schemes based on the Schrodinger
Functional widely used in non perturbative renormalization.

—C
*Hypercylindrical Euclidean manifold with temporal L D
boundaries. [Lischer et al. '92]

21,0 = [ Dla,Fle 4w o= |

0

‘Boundary conditions: ~ A
-Gauge fields Ci = fdiag(gblk, ey ONE) —
space
' P_|_¢ |a:0:0 — P_w |a:o:T =0 )‘.‘51
-Fermion fields — —
\{ @bP_ |370:0 — wP‘F |:co=T =0

\. (coupling in QCD, running quark masses, BSM,

l\-SuccessfuIIy applied in severel renormalization problems: /
{' . N,_composite operators, ...) f
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Introduction: -

L)
)

In any SF formulation, there are extra sources of cutoff effects
generated at the boundaries. (Extra dim 4 operators localized at
the boundaries).

*These can be removed through Symanzik improvement.

*For Wilson Fermions and gauge action, O(a) effects are due to— 1%
dim 5 operators in the bulk and dim 4 at the boundaries.

*O(a) improvement is achieved by adding

-Bulk: (dim5)  ¥iou Fu ¢ CswW
\{ -Boundaries: (dim 4)
\"\ -Gauge:  tr{FriFr} Ct
{I '\Nermion: Y PLDoy ct



Automatic O(a) improvement

IfR5is a symmetry of the massless continuum theory,
Rs : ¢ — iy59
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Automatic O(a) improvement

IfR5is a symmetry of the massless continuum theory,
Rs : ¢ — iy59
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Automatic O(a) improvement

IfR5is a symmetry of the massless continuum theory,

, Rs Y — 17y59
Oeven 0(1)7 O(a )7 v e — .
5 Y — Piys
Oodd O(a’)a O(CL )7
But... P15 = 15+
Could we ... {”7“5, Igi] =0
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Automatic O(a) improvement

IfR5is a symmetry of the massless continuum theory,

, Ry : Y — 1ys57
Oeven 0(1)7 O(a’ )7 - - .
5 Y — YPiys
Oodd O(a’)a O(CL )7
But... P+v5 = 75+
Could we ... {”7“5, Igi] =0
- - 1 ,
Yesllll V5 =571 Qi = 5 (1 £iv0y573)
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Chirally Rotated SF :@\/

X SF [sint '05-10] Implements in the SF the 8]
~ ~ mechanism of automatic
Qi |,—g=Q-V |, 7 =0 O(a) improvement

wQ‘F |x0:O — wQ— |;1:0:T — 0 Q:l: — 5 (1 + 1YOY5T3




Chirally Rotated SF -

L)
)

X SF [sint '05-10] Implements in the SF the
- ~ mechanism of automatic
Qi | g =Q-v |, —7 =0 O(a) improvement

_~ _~ - 1 .
VQy |0 =VQ- |poer =0 Qi = 5 (1 £ 4707573

SF and xSF related through a chiral rotation
(Identical in the continuum and chiral limits).

?ﬁ—> ]E(oz)w R(a) = T /2 o /2
v — YR(a)

Automatic O(a) improvement is expected after
\ renormalization and O(a) imp (of boundaries):

\
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X SF correlation functions

-Boundary to bulk and boundary to boundary

=) CD |

g§f2 _ _ = Xf1f2 Qf2f1 f1f2 _ QflfQQ 2f1%
X = AOJVOJSap
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X SF correlation functions

-Boundary to bulk and boundary to boundary

=) D |

f1f2 _ _ = Xf1f2 f2f1
2 0)9x g{1f2 _ Qf1f2Q 2f1%

«
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\{ *These are related to standard SF correlationfunctions through

r
I'

X = Ao, W, 5, P

the chiral twist

[R(m/2)y, OR(7/2)] QL) 57 = (O, YOI ) 55 /

\K R(a) — ei%TSa/z }/ 'ur
" ‘4 :




X SF correlation functions

Dictionary between SF and cSF correlation functions

dd - ud . d
fa=g4 =ga = —igy =18y ven
fp=igd" = —igd" = g’ = g¢"
| == gt = —igh! = gl G;'
0 fg = ight = —jgld — gud — du > SR
o“,\.

\{ the chiral twist
\

\

These are related to standard SF correlationfunctions throug

(O[R(r/2)0, ¥ R(r/2)] Q1) ysr = (O, P]OL ) 51

{ \\K Rlo) = o/ |




Renormalization and improve

Renormalization and improvement conditions evaluated
order by order in perturbation theory.

e Me¢

o Zf

mpcac = 0

: require a P5 odd observable to vanish.

gl =0; gi¥=0; gp'=0; gg' =0

. require absence of O(a) effects in Ps even

observable

. require absence of O(a) terms in the 1-loop

coupling

ment:
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Renormalization and improvement: -

For m¢ and 2t A

), ] —0.2025565(1) x C2(R),  csw = 1 | W2
c o —0325721(7) X CQ(R), csw = 0, | v

L) { 0.167572(2) x C5(R), csw =1 \.
P

0.33023(6) x C2(R), csw =0, ALK

m——s S

(s 51
a'l.



{ r-r,'f:u | _ \
W / _ |
For mc and 2f: ] ﬂ\ |
| | F%;;;:'T,L 19
(D —02025565(1) X OQ(R), csw = 1 ( | ga&:i;*"'?’;ﬂ? 7
¢ —0.325721(7) X CQ(R), csw = 0, | \ ;“P
() [ 0.167572(2) x Co(R),  csw = 1 43
5 0.33023(6) x Ca(R), csw =0, j
Different renormalization conditions R
— O(a) differences in 2t 0025
| ) W R 0.03
l Azf B Zf ud B Zf uu'
\ 54 TP 2 -0.0005
{ < AZ;B) = Z](cl) st 25}) ! __ 0,001
A ©) ) v ) &p 3 -00015
\ Az =z — 2 -0.002
kJ“- }1-,_' \ ! ! g5 ! ngau’ 00025,
& w:“?-u,
1 -l
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Renormalization and improveme

For ds we demand O(a) effects to be absent from the ratio
(several 9)

[nggd(xoj 97 a’/L)} R
[gzlgd(x()a 0, a’/L)} R

CE()ZT/Q




Renormalization and improvem

For ds we demand O(a) effects to be absent from the ratio
(several 9)

[g}é’d(moa 97 a/L)} R

d\) = —0.0009(3) x C2(R)
[gqléd(xoa 0, a/L” R

ZU():T/2

For ¢t we demand O(a) effects to be absent from the SF
coupling (standard definition through a background field).

1 aF/aT]'nZO

g

\{
\ 1y 0.006888(3), csw =1
‘7| —0.00661445(5), csw =0, /

™\~ i




Check automatic O(a) improvemen

1) Correct realization of the boundary conditions

Boundary bilinears defined with oposite projectors

Q5 ~ (TQ+C S(@,9)Q4 |, o=

=

v
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Check automatic O(a) improvemeji)t
( %L_(f ’

1) Correct realization of the boundary conditions

Boundary bilinears defined with oposite projectors

Qs ~ (TQ+C
Q=

L0035

-0.005

.05 .1
a/L

S(z, y)§+|

yo=0
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Check automatic O(a) improve

1) Odd observables must vanish in the continuum limit




Check automatic O(a) improvement

LY

1) Odd observables must vanish in the continuum limit |

. 0.02
a.d uu .
Condition: g, =0 .. un’
c. =0 0.015 Condition: g, =0
4
- b r
Co= ' v
. 0.01 SW ig, | N Y
-® ’

m = _ T . "-._ P ' . -"r,:' -
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0.015 \ I

N
* 0
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ﬁw* ot 0.005
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Check automatic O(a) improve

) Universality between SF and xSF: Ratios between
renormalized correlation functions converge.

X (/2 /) e
fa/2) VT fo(T/2)/V/Tr

|
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Check automatic O(a) improvement

{%J»L / .'.
iii) Universality between SF and xSF: Ratios between MV -C
renormalized correlation functions converge.
gx" (T/2)/Var g (T/2)/Var

fa/2)/Vin fe(T'/2)/vV i

Tree-level; 1-loop:




Cutoff effects In the SSF

0.2
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Applications:

Computation of finite renormalization factors (see Mattia
Dalla Brida's talk)  [B. Leder, S. Sint, '10]

_ .81/ L _ET/2)
ga(1/2) VT gud(T/2)

Z A

*Renormalization of 4-fermion operators:
Simpler observables & no operator improvement

B g =

wTwist-2 operators. [J. Gonzalez Lopez et al, '12]

A
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Conclusions

*The xSF implements the mechanism of automatic O(a)
Improvement in the SF setup.

*\We have determined to 1-loop in PT the necessary
coefficients for the renormalization and O(a) improvement

: 1 1 1 1
of the setup: m((: ), Zf{ )’ dg ), CE )

*\We have confirmed that after fixing these parameters,
automatic O(a) improvement is at hold (at 1-loop).

\i *The running coupling has been computed to 1-loop in pt.
\

+See Mattia's talk for a Nf=2 dynamical calculation.
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